Particle methods: An introduction with applications
نویسندگان
چکیده
Interacting particle methods are increasingly used to sample from complex high-dimensional distributions. They have found a wide range of applications in applied probability, Bayesian statistics and information engineering. Understanding rigorously these new Monte Carlo simulation tools leads to fascinating mathematics related to Feynman-Kac path integral theory and their interacting particle interpretations. In these lecture notes, we provide a pedagogical introduction to the stochastic modeling and the theoretical analysis of these particle algorithms. We also illustrate these methods through several applications including random walk confinements, particle absorption models, nonlinear filtering, stochastic optimization, combinatorial counting and directed polymer models. Key-words: Genetic algorithms, particle filters, mean field particle models, Feynman-Kac formula, Boltzmann-Gibbs measures, nonlinear Markov chains, interacting processes, genealogical tree based algorithms, simulated annealing, central limit theorem. ∗ Centre INRIA Bordeaux et Sud-Ouest & Institut de Mathématiques de Bordeaux , Université de Bordeaux I, 351 cours de la Libération 33405 Talence cedex, France, [email protected] † Department of Statistics & Department of Computer Science, University of British Columbia, 333-6356 Agricultural Road, Vancouver, BC, V6T 1Z2, Canada and The Institute of Statistical Mathematics, 4-6-7 Minami-Azabu, Minato-ku, Tokyo 106-8569, Japan, [email protected] in ria -0 04 03 91 7, v er si on 1 14 J ul 2 00 9 Méthodes particulaires : Une introduction avec applications Résumé : Les méthodes particulaires en interaction sont de plus en plus utilisées pour simuler des mesures de probabilités complexes dans des espaces de grandes dimensions. Leurs domaines d’applications sont diverses et variés en probabilités appliquées, en statistique bayesienne et dans les sciences de l’ingénieur. L’analyse rigoureuse de ces nouvelles techniques de simulation de type Monte Carlo conduit à des techniques mathématiques fascinantes liées à la théorie des intégrales de Feynman et leurs interprétations particulaires. Nous présentons dans ces notes une introduction pédagogique à la modélisation stochastique et l’analyse théorique de ces algorithmes particulaires. Nous illustrons aussi ces modèles avec différentes applications, telles le confinement de marches aléatoires, des modèles d’évolutions de particules dans des milieux absorbants, des modèles de filtrage non linéaire, des problèmes d’optimisation stochastique, des questions de comptage combinatoire et des modèles de polymères dirigés. Mots-clés : Algorithmes génétiques, filtres particulaires, modèles de champ moyen, formules de Feynman-Kac, mesures de Boltzmann-Gibbs, châınes de Markov non linéaires, processus en interaction, modèles d’arbres généalogiques, recuit simulé, théorèmes limites. measures, nonlinear Markov. in ria -0 04 03 91 7, v er si on 1 14 J ul 2 00 9 Particle methods: An introduction with applications 3 Particle methods: An introduction with applications Piere Del Moral , Arnaud Doucet July 14, 2009
منابع مشابه
An Introduction to Particle Methods with Financial Applications
The aim of this article is to give a general introduction to the theory of interacting particle methods, and an overview of its applications to computational finance. We survey the main techniques and results on interacting particle systems and explain how they can be applied to the numerical solution of a variety of financial applications such as pricing complex path dependent European options...
متن کاملMicrodosimetry: experimental methods and medical applications
Introduction: Microdosimetry is a fundamental method that studies the nature of energy transfer in micron volumes in the particular biological cells. In a biological target, the amount of ionization does not indicate the magnitude of biological radiation-induced damage. However, the severity of biological harm depends strongly on the amount of the linear energy transfer along t...
متن کاملAn Introduction to Bayesian Techniques for Sensor Networks
The purpose of this paper is threefold. First, it briefly introduces basic Bayesian techniques with emphasis on present applications in sensor networks. Second, it reviews modern Bayesian simulation methods, thereby providing an introduction to the main building blocks of the advanced Markov chain Monte Carlo and Sequential Monte Carlo methods. Lastly, it discusses new interesting research hori...
متن کاملOptimum Design of a Five-Phase Permanent Magnet Synchronous Motor for Underwater Vehicles by use of Particle Swarm Optimization
Permanent magnet synchronous motors are efficient motors, which have widespread applications in electric industry due to their noticeable features. One of the interesting applications of such motors is in underwater vehicles. In these cases, reaching to minimum volume and high torque of the motor are the major concern. Design optimization can enhance their merits considerably, thus reduce volum...
متن کاملOptimum Design of a Five-Phase Permanent Magnet Synchronous Motor for Underwater Vehicles by use of Particle Swarm Optimization
Permanent magnet synchronous motors are efficient motors, which have widespread applications in electric industry due to their noticeable features. One of the interesting applications of such motors is in underwater vehicles. In these cases, reaching to minimum volume and high torque of the motor are the major concern. Design optimization can enhance their merits considerably, thus reduce volum...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009